Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(5): 3352-3362, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38265279

RESUMO

Lead halide perovskite nanocrystals, which offer rich photochemistry, have the potential to capture photons over a wide range of the visible and infrared spectrum for photocatalytic, optoelectronic, and photon conversion applications. Energy transfer from the perovskite nanocrystal to an acceptor dye in the form of a triplet or singlet state offers additional opportunities to tune the properties of the semiconductor-dye hybrid and extend excited-state lifetimes. We have now successfully established the key factors that dictate triplet energy transfer between excited CsPbI3 and surface-bound rhodamine dyes using absorption and emission spectroscopies. The pendant groups on the acceptor dyes influence surface binding to the nanocrystals, which in turn dictate the energy transfer kinetics, as well as the efficiency of energy transfer. Of the three rhodamine dyes investigated (rhodamine B, rhodamine B isothiocyanate, and rose Bengal), the CsPbI3-rose Bengal hybrid with the strongest binding showed the highest triplet energy transfer efficiency (96%) with a rate constant of 1 × 109 s-1. This triplet energy transfer rate constant is nearly 2 orders of magnitude slower than the singlet energy transfer observed for the pure-bromide CsPbBr3-rose Bengal hybrid (1.1 × 1011 s-1). Intriguingly, although the single-halide CsPbBr3 and CsPbI3 nanocrystals selectively populate singlet and triplet excited states of rose Bengal, respectively, the mixed halide perovskites were able to generate a mixture of both singlet and triplet excited states. By tuning the bromide/iodide ratio and thus bandgap energy in CsPb(Br1-xIx)3 compositions, the percentage of singlets vs triplets delivered to the acceptor dye was systematically tuned from 0 to 100%. The excited-state properties of halide perovskite-molecular hybrids discussed here provide new ways to modulate singlet and triplet energy transfer in semiconductor-molecular dye hybrids through acceptor functionalization and donor bandgap engineering.

2.
J Phys Chem Lett ; 15(2): 401-407, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38176062

RESUMO

Directing energy flow in light harvesting assemblies of nanocrystal-chromophore hybrid systems requires a better understanding of factors that dictate excited-state processes. In this study, we explore excited-state interactions within the CsPbI3-cyanine dye (IR125) hybrid assembly through a comprehensive set of steady-state and time-resolved absorption and photoluminescence (PL) experiments. Our photoluminescence investigations reveal the quenching of CsPbI3 emission alongside the simultaneous enhancement of IR125 fluorescence, providing evidence for a singlet energy transfer. The evaluation of both photoluminescence (PL) quenching and PL decay measurements yield ∼94% energy transfer efficiency for the CsPbI3-IR125 hybrid assembly. Transient absorption spectroscopy further unveils that this singlet energy transfer process operates on an ultrafast time scale, occurring within 400 ps with a rate constant of energy transfer of 1.4 × 1010 s-1. Our findings highlight the potential of the CsPbI3-IR125 hybrid assembly to extend the emission of halide perovskites into the infrared region, paving the way for light energy harvesting and display applications.

3.
ACS Nano ; 17(19): 19052-19062, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37725791

RESUMO

Movement of energy within light-harvesting assemblies is typically carried out with separately synthesized donor and acceptor species, which are then brought together to induce an interaction. Recently, two-dimensional (2D) lead halide perovskites have gained interest for their ability to accommodate and assemble chromophoric molecules within their lattice, creating hybrid organic-inorganic compositions. Using a combination of steady-state and time-resolved absorption and emission spectroscopy, we have now succeeded in establishing the competition between energy transfer and charge trapping in 2D halide perovskite colloids containing naphthalene-derived cations (i.e., NEA2PbX4, where NEA = naphthylethylamine). The presence of room-temperature triplet emission from the naphthalene moiety depends on the ratio of bromide to iodide in the lead halide sublattice (i.e., x in NEA2Pb(Br1-xIx)4), with only bromide-rich compositions showing sensitized emission. Photoluminescence lifetime measurements of the sensitized naphthalene reveal the formation of the naphthalene triplet excimer at room temperature. From transient absorption measurements, we find the rate constant of triplet energy transfer (kEnT) to be on the order of ∼109 s-1. At low temperatures (77 K) a new broad emission feature arising from trap states is observed in all samples ranging from pure bromide to pure iodide composition. These results reveal the interplay between sensitized triplet energy transfer and charge trapping in 2D lead halide perovskites, highlighting the need to carefully parse contributions from competing de-excitation pathways for optoelectronic applications.

4.
J Phys Chem A ; 127(1): 99-106, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36375093

RESUMO

Transient chemistry of sensitizing dyes is important to obtain insights into the photochemical conversion processes of light harvesting assemblies. We have now employed transient absorption spectroscopy (pulsed laser and pulse radiolysis) to characterize the excited state and radical intermediates of a perylene derivative, (5,10,15,20-Tetraphenylbisbenz[5,6]indeno[1,2,3-cd:1',2',3'-lm]perylene (DBP). The distinguishable transient absorption features for the singlet and triplet excited states and radical anion and radical cation provide spectral fingerprints to identify the reaction intermediates in photochemical energy and electron transfer processes of composite systems involving DBP. For example, identifying these transients in the energy transfer processes of the rubrene-DBP system would aid in establishing their role as annihilator-emitter for triplet-triplet annihilation up-conversion (TTA-UC). The transient characterization thus serves as an important mechanistic fingerprint for elucidating mechanistic details of systems employing DBP in optoelectronic applications.

5.
J Phys Chem A ; 126(40): 7147-7158, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36074750

RESUMO

The ability to manipulate low-energy triplet excited states into higher-energy emissive singlet states, a process known as photon upconversion (UC), has potential applications in bioimaging, photocatalysis, and in increasing the efficiency of solar cells. However, the overall UC mechanism is complex and can involve many intermediate states, especially when semiconductors such as lead halide perovskites are used to sensitize the required triplet states. Using a combination of pulse radiolytic and electrochemical techniques, we have now explored the transient features of rubrene─a commonly employed triplet annihilator in UC systems. The rubrene triplet, radical anion, and radical cation species yield unique spectra that can serve as spectral fingerprints to distinguish between transient species formed during UC processes. Using detailed kinetic studies, we have succeeded in establishing that the rubrene triplets are susceptible to self-quenching (kquench = 3.6 × 108 M-1 s-1), and as the triplets decay, an additional transient feature is observed in the transient absorption spectra. This new feature indicates a net electron transfer process occurs to form the radical cation and anion as the triplets recombine. Taken together, this work provides a comprehensive picture of the excited state and transient features of rubrene and will be crucial for understanding the mechanism(s) of photon upconversion systems.


Assuntos
Fótons , Transporte de Elétrons , Cinética , Naftacenos
6.
J Phys Chem Lett ; 13(13): 2921-2927, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35343694

RESUMO

Lead-free halide double perovskites offer an environmentally friendly alternative to lead halide perovskites for designing optoelectronic solar cell devices. One simple approach to synthesize such double halide perovskites is through metal ion exchange. CsPbBr3 nanocrystals undergo exchange of Pb2+ with Au(I)/Au(III) to form double perovskite Cs2Au2Br6. When excited, a majority of the charge carriers undergo quick recombination in contrast to long-lived charge carries of excited CsPbBr3 nanocrystals. This metal ion exchange process is reversible as one can regenerate CsPbBr3 by adding excess PbBr2 to the suspension. Interestingly, when subjected to visible light irradiation, Cs2Au2Br6 nanocrystals eject reduced Au from the lattice as evidenced from the formation of larger gold nanoparticles. The presence of residual Pb2+ ions in the suspension restores the original CsPbBr3 composition. The results presented here provide insight into the dynamic nature of Au within the perovskite lattice under both chemical and light stimuli.

7.
J Phys Chem A ; 124(19): 3770-3777, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32164409

RESUMO

We investigate a few density functional theory-based reactivity indices of chemistry, with a view to arrive at an intercomparison and also consider their applications toward the problems of chemical significance. In particular, we propose to use the concepts of fugality and atom-atom polarizability to study the acidic strength of para-substituted benzoic acid derivatives. The nature of the variations and trends in the correlation of reactivity parameters and pKa values is shown to provide an insight into the applicability of these concepts to such reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...